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Abstract

Power consumption is an important constraint on VLSl systems. With the
advancement in technology, it is now possible to pack alarge range of functionalities into
VLSI devices. Hence it is important to find out ways to utilize these functionalities with
optimized power consumption. This work focuses on curbing power consumption at the
design stage. This work emphasizes minimizing active power consumption by
minimizing the load capacitance of the chip. Capacitance of wires and vias can be
minimized using Ant Colony Optimization (ACO) agorithms. ACO provides a multi
agent framework for combinatorial optimization problems and hence is used to handle
multiple constraints of minimizing wire-length and vias to achieve the goal of minimizing
capacitance and hence power consumption. The ACO developed here is able to achieve
an 8% reduction of wire-length and 7% reduction in vias thereby providing a 7%

reduction in total capacitance, compared to other state of the art routers.

Vi
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CHAPTER 1

Introduction

1.1 Technological Advances

Rapid advances in VLSI technology have incredlsechumber of transistors that can
be placed on a single chip to about two billion. [§uch advances in technology
simultaneously decrease chip cost [2, 3] and irsereaformation processing power of
chip. The processing power of the chip is the ltestiswitching transistors i.e. the
process of charging and discharging. Every timamsistor switches, power is consumed
by the chip. With each process generation, thesistors have shrink in size and can be
switched quickly. This increased switching capaaitymbined with an increase in
number of transistors leads to increased poweruwcopson by the chip [4]. Thus, power
efficient designs are key goals in current VLSliges

Power dissipation in a VLSI circuit consists of ttvo major components: static
power and dynamic power [5]. Static power componsrdue to the leakage current
drawn continuously from the power supply. A smaticaint of current leaks through the
transistor even when it is switched off. This isowm as leakage current. The major
component of power is dynamic power. The dynamiwgrocomponent is dependent on
the supply voltage, the load capacitances andrdggiéncy of the operation. One of the
components of load capacitance is the wire capamtaWires are used to connect

various components on a chip and hence defindalbperations to be performed on the
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chip. The large resistance of wires causes a wltagp between the source and drain
leading to sub threshold leakage which causes @pdrain.

Moreover as device dimensions have scaled dowrgsware spaced closer together
which has increased wire capacitance relative te gapacitance [6].

A study conducted at Berkley [7] shows that 60-76fcthe total chip power is
consumed by transistors and the remaining 30-40%epds dissipated in the form of
heat and capacitance through wires and vias. Age@mensions scale down further,
wires will be an increasingly important contributordynamic power.

Modern VLSI circuits route wires on multiple meti@yers and vias provide an
electrical connection between two adjacent rout@ygrs. Thus in complex circuit design
which contains about 2 million nets to be routedew/and vias play a fundamental role.
This necessitates the importance of minimizingdhpacitance by minimizing the wire-
length and vias used to route these nets.

The active power P consumed by a chip can be wij@kas:

P =a C V/f (1.1)
where a is the activity factor,

C denotes the total load capacitance,
V represent the voltage supplied and
fis the clock cycle.

Today, most of the VLSI design methodologies areetaon library cell approach.
The routing is used repetitively during placememage to find the optimal placement for
any cell. Most wire-routing problems are computadidy hard [9]. Moreover,

determining that whether an instance of a routingblem is solvable is NP-complete

www.manaraa.com



[10], hence there is no deterministic algorithnfital the optimal routing in polynomial

time.
1.2 The Routing Problem

The routing problem is defined as locating a setaths to route wires that connect all
the nets in the net-list. A net is a set of cdllsq called terminal nodes) that need to be
connected to each other in a predefined manner.nlingber of nets on a chip ranges
from 50,000-3,000,000 [11]. And each one of thests mas large number of possible
routes. This gives us an insight that routing peablis computationally very difficult
(NP-complete) [9, 10].

The routing problem is one the most widely investgl problems in VLSI design
automation, and there are various performance aswj constraints associated with it.
One of the important constraints that affect tHeciehcy and the usability of the chip is
the power consumed by the chip. From Eg. 1.1 ib¥ed that the power consumed by the
chip is a function of capacitance induced. Moredber two main capacitance inducing
components on a chip are the routed wires and Viais. implies that minimizing the
number of wires and vias could effectively reduee power consumption of the chip.

However, there is a tradeoff between the numbeviad and wire length used in
routing. Vias help in reducing wire-lengths by allog wires to route through shorter
routes available in different routing layers. Thmgimizing vias could increase the total
routed wire-length whereas minimizing wire-lengtbuld require more vias. Thus the
goal of this thesis is to minimize the power conption of the chip by finding routing

solutions that minimize the total capacitance iretliby the wires and vias together.
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The routing of the large number of nets on a cake$ about 30% of total design time
and 90% of chip area [12]. Traditionally, the rogtiproblem is divided into two phases.
The first phase is called as global routing, whiigmerates an approximate routing for
each net. It assigns a routing region for each wihout specifying actual geometric
layout of wires. Detailed routing is the processnogplementing the actual geometries of
the interconnections among the pins specified bgtdist. It completes the point to point
wiring by specifying geometric information suchlasation and width of wires and their

layer assignment.

1.3 Problem Formulation

The global routing problem is typically studied asgraph problem. The routing
regions, their relationships and capacities areeateadas graphs. However, the design
style and objective functions strongly affect whgiaph models are used, and as a result
there are several graph models used by differantng algorithms. The order in which
nets are routed is important. In a sequential apgranets are routed one at a time. The
ordering problem is defined as finding a particidarmutation of routing nets such that
the nets that are routed later do not suffer frdotkages or unavailability of routing
paths.

This work considers the problem of routing multméal nets in a three dimensional
routing geometry. Given a set of nets to be comutkdhe algorithm tries to find the
routing that uses optimal length of wire-length asmak to route the nets. The algorithm
casts the routing problem as a multi-objective grppblem and solves for wire-length

and vias.
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The routing of nets with more than two terminala ba formulated as a tree problem
which can be stated as:
Given a set of nets in a netlist N= {N1,,\N3 ... Ny} and the placement of various

components P= {PP, P; . P}, find a tree for each net;Nwhich routes the net, such

that the objective function is satisfied. The objexfunction is to:
i) Minimize the total wire length used by all the nitgether.

i) Minimize the number of vias used by the nets.

iii) Minimize the capacitance introduced by the viasairds.

1.4 Routing Benchmark and Format

There has been extensive research in the fieldaoEment and routing algorithms for
VLSI circuits. For example, there are several neadamic placers and routers that use
different approaches like simulated annealing [&8fficial intelligence [14] and neural
networks[15]. These approaches are compared usiblicly available standard circuit
benchmarks and suites. The Design Automation (DoRraunity has heavily relied on
these benchmark suites to compare and validatealgairithms. These benchmark suites
are maintained by the Collaborative Benchmarkindpdratory [16]. Benchmarks are
available for placement, routing and both placenaeat routing simultaneously. We use
routing benchmarks from the ISPD benchmark suité [1

Any complete EDA (Electronic Design Automation) & is a disparate set of
heterogeneous tools stitched together [17]. Dutihegdesign flow these different tools
interact with each other using data-file generatand translation. These files are

generated in a particular format by one tool aaddlated by another tool to its internal
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data structure. Thus ‘format’ is defined as a difeset of files that contain data in a given
syntax that is understood by different interactiogls [18]. One of the most recent and
versatile format is the Bookshelf format. Bookshislfan object oriented format that
contains information in the form of library. Beimpject-oriented allows reuse of the
same specifications for more complex circuits amdoss different platforms. This
research uses IBM ISPD98 benchmarks in bookshethdb and is described below in

detail.

1.5 Ant Colony Optimization

‘Ant Colony Optimization’ provides a multi-agentafnework for combinatorial
optimization problems. This nature inspired metais#ia originates from the capability
of ants to find shortest paths from their nestotodf source. Natural ants achieve this goal
through constant co-ordination and indirect comroaton using a chemical substance
called pheromone [19].

This collective problem solving ability results finoa reinforcement process in which
ants deposit a pheromone trail as they return fimod source to their nest [20]. Since
ants following the shortest path can complete ttngis in less time, they will make more
trips between their nests and the food source,dmmpbsit more pheromone on shorter
paths compared to longer paths. The strength ofopi@ne on each path guides
remaining ants to the food source [19].

ACO algorithms have been widely and successfullyedusn combinatorial
optimization problem solving. Every ant in the amlony practices an independent

sequential decision process aimed at constructiegsble solution for the optimization
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problem at hand by using only information local ttee current decision step. The
outcomes of the search process are used to ldoatedst promising search areas, and
the parameters used by the approach are updatiedus the search in the promising
areas. Due to this independent decision makings #RCO algorithm is highly
parallelizable. Ants use pheromone informationgtode the search process and to
transfer knowledge from an iteration of the optiatian algorithm to the next. In ACO
all decisions that lead an ant to a good solutien ansidered equally important and
receive the same amount of pheromone. The colediehavior of ants independently
searching for best solution results in the esthbient of the shortest route.

There are many algorithms derived from ant colorgtaheuristic which are used to
formulate solutions for many different problems. d'af the main categories are static
and dynamic combinatorial optimization problemsatit problems are those whose
topology and parameters do not change while thelg@nois being solved. An example of
static optimization problems is the Traveling Salas problem (TSP). The TSP can be
stated as: Given a number of cities and the costagtling from city to any other city,
what is the least-cost round-trip route that viedsh city exactly once and then returns to
the starting city [21].

Dynamic optimization problems are those in whicle topology and parameters
change while the problem is being solved. An exangbldynamic optimization problem
is routing in communication networks. The traffiatierns and network parameters in
communication networks change continuously withetinThe ACO metaheuristic
captures these differences and is general enougbnbprise the ideas common to both

application types.
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The ACO algorithm differs from other heuristic apaches. The heuristic experience
gained during the execution of an ACO algorithmef@mone trails) is updated in real
time. This allows the algorithm to perform a cuntiwia search over the whole search
space. This thesis adapts an ACO based algorithstdtic routing to find optimal routes
for routing of components on VLSI chips. Optimalutes are defined for a group of
components placed on a chip, while minimizing rdategth, number of vias, capacitance
and time taken to calculate routes. Combining tltesstraints defines a set of objectives

that can be utilized by these ants to find solutmthe routing problem.

www.manaraa.com



CHAPTER 2

Previous Work

2.1 Detailed Routing

In the two phase routing approach, a detailed mguphase follows a global routing
phase. During the global routing phase, wire paitiesconstructed through a subset of
routing regions, connecting the terminals of eaeh nThe detailed router places the
actual wire segments within the region indicatedh®yglobal router, thus completing the
required connections between the terminals [224b@ll routing controls the success of
detailed routing. In new designs the placement auding occurs simultaneously and
global routing is responsible for guiding placemesigines and hence impacts
lithography, chemical polishing and manufacturinfigtlee chip. The detailed routing
problem is usually solved incrementally, routinther a particular region or a particular
net at a time.

Important nets could be routed first, dependinghow importance is defined. Below
are the definitions for various terms related tatiry.

Grid : Manhattan geometry where only horizontal andivaltines are allowed. The
routing region if formed either of symmetrical ayanmetrical grid lines. Symmetric grid
has equal distance between any two horizontal iceélines. Asymmetric grid does not
have equidistant separation (Figure 2.1). Horidolmes are called rows and vertical

lines are called columns [14, 23].
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Routing Region The area between different cells on a chip, sefesfor routing nets

is called the routing region.

Switchbox and Channel Channel and Switchbox are two routing methodwich
the routing region is divided into rectangular decThe perimeters of these blocks
contain pins which need to be connected. A rectanduock with terminals assigned to
fixed positions on three or four sides is calleswatchbox. If terminals are assigned to

fixed positions only two opposite sides of a regtaar region is called a channel [24] .

Interconnect: Interconnects (also called wires) are used tmeondevices on a chip.

Via: Same net spanning different layers are connectet vias. Vias are represented

as the intersection of two lines on two differerdtat layers.

Cell: The design of VLStircuits involving many thousands of transistorsedraees
manageable when the system is partitioned intolemabic blocks called cells [15]. A
cell is a simple logic unit stored in cell librad.single cell contains about 100-1000

transistors.

Terminal Nodes A cell has input/output pins to connect to oticells. The pins

which a cell uses for input/output purpose areecaiérminal nodes.

10
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Net: A net is a set of cells that need to be connetiteglach other in a predefined

manner (Figure 2.2).

Subnet A simple connection between two points is caleedsubnet. Every net

consists of one or more subnets and each subnsist®of two terminals.

Net list: A set of all the nets to be routed on a singie.ch

Pitch: The center to center distance between two interects.

Parasitic capacitance Parasitic capacitance is the unavoidable andlysuavanted
capacitance that exists between the parts of nmaiconnects or other parts of circuit

simply because of their proximity to each other.

Layer: Modern VLSI circuits route wires on multiple metayers. Multiple layers
provide tiers of horizontal and vertical routingear stacked over each other and

connected by vias (Figure 2.3).

2.2 Routing Models

Characteristics of a routing problem largely dependthe topology of the routing
region and the constraints the problem takes iatsideration. These characteristics also
define that how the problem would be approachedtat algorithms or model would be

used to solve it. Various routing models are disedselow:

11
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(a) (b)
Figure 2.1: (a) Symmetric Grid (b) Asymmei@rid

NET

Figure 2.2: An example of cell, net and pins df.ce

e =

Vemcaf Layer

Horizantal Layer /

/./Verzxcaf Layer
e Horizontal Layer /

Figure 2.3: Vertical and Horizontal Layers connddig vias.

12
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Grid and Gridless Models The grid-based approach requires that the tetmjimares
and vias should conform to a grid. The presencgridf makes computation easy, but it
requires large amount of memory to maintain thd,gand the wire width is restricted. In
the gridless approach an imaginary grid is construdy extrapolation of placed
components’ coordinates. The gridless approactomsidered more practical primarily
because all the wires in a design do not have samdéhs (Figure 2.4). Gridless
approaches allow arbitrary location of terminalstsnand vias and arbitrary wire width

[22, 25, 26].

I

(a) (b)
Figure 2.4: (a) Grid Based (b) Gridless Model

Layered Approach: Modern VLSI circuits route wires on multiple methdyers.
Multiple layers provide tiers of horizontal and tkeal routing area, stacked over each
other and connected by vias. Wires on same layematacross each other, unless they
form a connection, whereas wires on different laybat cross each other do not connect
unless an explicit connection through a via isldithed. Multiple layers allow a higher

density of components, which shrinks the distarlmetsveen cells, thus reducing wire-
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lengths. Moreover, layered model utilizes wireshwitirying thickness in different metal
layers. In order to minimize resistance, thick rhetimes are used in upper metal layers
and used to lay long routes between distant cellaus the layered approach provides an
effective method to reduce wire resistance [27, BBjwever thick wires also increase
the coupling capacitance of the wires[29].

If any net segment is allowed to be placed in ayel, it is called an unreserved
layered model. When certain type of segments ateicted to particular layers, than it is
a reserved layer model. Most of the routing alpong use reserved layer models where
horizontal assignments are reserved to one paatidayer and vertical assignments in
another layer. Such models can be easily exterrdedtivo layers to three layers (Figure

2.5). Modern design typically use six to eight mgtlayers.

Vias ¥

(@)

(b)
Figure 2.5: (a) Layered Model (b) Unreserved Layiedel
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2.3 Routing Algorithms

Routing is a complex task. Decomposition of routprgblem makes the automatic
routing of today’'s VLSI circuits possible. The fiNing hierarchy [30] shows the
decomposition of the routing problem. At the fitevel of hierarchy are the global,
detailed, and specialized routers. The global rodistributes the nets over the entire
chip. Once the terminals of each channel are datedrthe detailed router will find the
exact location of wire segments of each net. Tleeigpzed router is designed to solve a
specific problem like routing of power wires, grauwires and wires that has some
particular constraints. Power and ground wires iregspecial attention for two reasons
(1) they are usually routed in one layer in orderdduce the parasitic capacitance of
contacts, and (2) they are usually wider than othiees ( signal and data) since they
carry more current.

Detailed routers further divide into general pugasd restricted routers. The general
purpose routers impose very few constraints omdaheng problem and operate on single
connection at a time. General purpose routers vaorkthe entire design in a serial
fashion, while restricted routers require some trang on the routing problem, like
limits on maximum routing area used, maximum deéfeyt can be tolerated etc. Because
of their limited scope they are able to performtdrein terms of tackling any particular
type of routing problem. Routers typically use etaagular grid in which horizontal and
vertical wires are placed in different layers, edlManhattan routing. Some routers use a

rectangular  grid that also allows diagonal connections knowns a
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SPECIALIZED DETAILED
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ANMIIAN NON-MANHATTAN \

STEINER TREE GREEDY ACO-ROUTE ACO-NMROUTE

Figure 2.6: Routing Hierarchy [30]

Non-Manhattan routing. At the lowest level of hietay different techniques are
presented, but in general these techniques canoler into 3 broad categories i.e. (1)
algorithms (2) expert systems, and (3) neural netsvdl he routing algorithm developed
in this thesis uses a layered approach in whiderdifit layers are assigned for different
routing directions. Also the algorithm is used ¢ote both manhattan and non-manhattan
architectures. The Ant Colony algorithm based nouses a heuristic based approach to

route the chip.

2.3.1 Multi Layer Routing

Multi-layer routing allows tiers of horizontal angrtical routing area, stacked over
each other and connected by vias. Vias providdeuirigal connection between any two

points on different routing layers. Multiple layealow a higher density of components,
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which shrinks the distances between cells, thuaaiad wire-lengths [31]. One of the
widely used routing method uses an alternate hot@and vertical routing layer called
as HV routing. This pattern can be repeated depgndn the number of layers, e.g. if
four routing layers are allowed we get an HVHYV iogf and so on.

Some of the important routing algorithms are désea below:

i) Maze Routers:

Maze Router is one of the earliest automatic rguailgorithms. Maze routers are
general-purpose routers which find the shortedtlirezar path between source point and
destination point on a gridded model. In the fi4aze router [32] Lee proposed an
algorithm to find a short path between two poiritattcrosses a minimum number of
existing paths. It considers the routing surfaceaasectangular array of cells. The
algorithm starts by marking the source cells ageds In successive steps, it visits all the
unvisited neighbors of visited cells. This contisumtil the destination cell is visited.
Due to the breadth-first nature of the search, maater is guaranteed to find the shortest
path between source and destination.

There are four phases in simple maze router (Lipsethase, (2) expansion phase, (3)
backtrack phase and (4) cleanup phase [33]. Tl gtase determines the two points to
be connected as source and destination. In thensipa phase, all the unvisited
neighbors are visited in a least cost fashion. ddst of visiting each neighbor is depicted
as a numeral in the grid below. Once the destingtmint is reached the router heads for

backtracking phase.
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Some of the drawbacks of Lee’s algorithm are thedutes one net at a time, so there
is possibility of having some nets un-routed atehd of the routing process. Also, as it
follows breadth first search, it requires a largaoant of storage space and its
performance degrades rapidly when the size of graleases. The time and space
complexity of Lee’s algorithm i®( hx w) for a grid of dimensiot x w. To improve the
memory requirements and speed of basic maze radifeerent techniques have been
proposed [34-38]. Due to its simplicity it can b&ed for both custom, semi-custom ICs

as well as large PC boards. Most FPGAs use sonmgivarof the maze router.

i) Greedy Router:

The greedy router routes the channel in a lefigbty column-by-column manner,
wiring each column completely before starting tlegtn Within each column the router
tries to maximize the utility of the wiring, usirsgmple, "greedy" heuristics. The router
does not use horizontal and vertical constraint$.dacisions are made locally at a
column. Greedy router is always able to complegertuting. But this complete routing
is at the expense of some additional columns adtifte end of the channel [39]. It may
place a net on more than one track for a few cofjrand "collapse” the net to a single
track later on [40]. To route any complete net-seedy router requires three non-
negative integers: initial channel width, minimuag4length, and steady-net constant. A
jog is a vertical wire that brings a pin closeramother pin on the channel side. Thus
minimum jog-length signifies a constraint thatgetat a router can not use a jog shorter
than lengthj the minimum jog-length. Generallyconstraint exists and defined due to

fixed channel width. A high value ¢fimplies longer running straight wires and hence
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reduces number of vias. Whereas a small valueiwiplies shorter wires which spans
fewer tracks and thus reduces the number of rottaois.

As it routes column by column, it allows horizontates to change tracks which leads
to use of large number of vias. Moreover as itasdal on a greedy approach, its searches

often terminate at solutions having local optimuthas giving sub-optimal solutions.

iii) Steiner Tree Based Algorithms

Global routing algorithms presented above weresndggble for global routing on multi-
terminal nets. The algorithms can only route twonieal nets. To route any multi-
terminal net, the net is first broken into multipheo terminal nets. The quality of routing
in such approaches was highly dependent on hountlie-terminal nets are broken into
two terminal nets. To achieve optimal results, wsy of decomposing a net should be
based upon how a router approaches the routindgmolbe. whether it routes on column
basis or row basis or a combination of both.

One of the key methods for routing multi-terminadts is the Steiner Tree
approach. A Steiner tree is minimum weight treenemting a designated set of vertices,
called terminals, in an undirected graph or pointa space. The weight or cost of a
Steiner tree is expressed as the sum of lengtal thfe edges of the tree. The Steiner tree
algorithm is used to solve various similar sub peots like in inverter tree and clock tree
algorithms as well as in global and detailed ragitiA rectilinear Steiner tree has only
rectilinear edges. The problem of finding recalin Steiner tree of minimum cost is NP
hard [41, 42]. In view of the NP hardness, sevémlristic algorithms have been

developed. Most of the heuristic algorithms dependminimum cost spanning tree. A
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minimum spanning tree is a spanning tree with mimmweight or cost. A spanning tree
of a graph is a sub graph which is a tree and cusaradl the vertices together. A graph
may have several minimum spanning trees. Hwang44Bshows that the ratio of the

cost of a minimum spanning tree to that of an ogtiractilinear Steiner tree is no greater
than3/2. This is due to the relationship between Steireg &tnd minimum cost spanning
tree - the Steiner trees are generated by firdirfgnthe minimum cost spanning tree.

The Steiner tree algorithm first define an undedygrid G(S) of S as the grid
obtained by drawing horizontal and vertical linesotigh each point of S. The next step
involves finding the minimum cost spanning treetloé graph. An approximation of
optimal rectilinear Steiner tree can be obtained régtilinearizing each edge of a
minimum spanning tree [22]. The difference betwé#en Steiner tree problem and the
minimum spanning tree problem is that in the Stetnee problem, extra intermediate

vertices and edges may be added to thehgmaporder to reduce the length of the

- -

(b)

(@)

Figure: 2.7: (a) An example of Steiner tree whdue Ipoints represents Steiner points.

(b) An example of rectilineamimal Steiner tree.
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spanning tree. These new vertices introduced toedse the total length of connection
are known as Steiner points or Steiner verticeStéiner point is a non-terminal vertex
of degree three or four, while a corner point rea-terminal vertex of degree two where
the two edges meeting at a corner point are perpéad Non-terminal vertices of
degree two with two collinear incident edges araageed by merging both edges. There
are various different versions of Steiner treesordigms. Accurate estimation of
rectilinear Steiner minimal trees could be obtainsdhg either optimal algorithms [45,
46] or near optimal heuristics [47, 48]. But thedgorithms are computationally very
expensive to use in practice [49]. Moreover theetcomplexity increases exponentially
with increase in number of terminals of the netudthere are heuristic based Steiner tree
algorithms that are suggested for VLSI routing B)- Each different version uses a
different heuristic to obtain a good estimationoptimal Steiner tree formed by VLSI
nets. One of the algorithcktsteiner{53] uses numerical model simulation to determine
Steiner points. The algorithm models the routing @s a circuit with grid nodes acting
as output ports. The simulation helps to deterntiveevoltage at various nodes which
hence decides if a node could be a Steiner poinbbr Some of the approaches use Ant
Colony Optimization technique to solve Steiner fpeeblem in VLSI nets [54]. The Ant

Colony Optimization technique is discussed below.

2.3.2 Academic Routers

Based on the approaches described above thereaane asademic routers that have

been developed. Many of these routers are usednahimarks for comparison by various
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other academic routers and have been stated asofttite-art academic routers [55-57].
Some of these academic routers are Labyrinth R¢p8¢ FastRoute [59], FastRoute2.0
[60] and NTHU Router [61].

Labyrinth Router uses maze routing to provide ateurouting of all nets and wire
length estimation, at the expense of longer runnimg. FastRoute uses a congestion
driven Steiner tree construction to determine g&idiner nodes and Steiner tree
topologies. For routing purposes the routing areaivided into rectangular regions
called global bins. Each bin has a fixed routingazdty. Congestion occurs when the
number of routing tracks routed through a particlden exceeds its capacity. During
placement of cells different placements are evalliély approximating the route length.
This is known as approximation. FastRoute is useelvhluate different cell placements
to determine which placements result in minimumewangth and congestion levels.
FastRoute2.0 is an improvement in terms of congesind wire-length compared to
FastRoute, but it requires longer run time. Theaatlyge of FastRoute2.0 is that it is fast
enough to use for approximation and accurate enoaigbute most (but not all) nets.
This makes the approximation much more useful bexapproximation is much more
accurate if the same algorithm is used for appration and actual routing.

These algorithms approach the Steiner tree proldgntoncentrating on one
major objective: to minimize the total length oktlree. These algorithms do not take
into account any other criterion that could afféne total power consumption of the chip
which requires minimizing the total capacitancetloé chip. Moreover Steiner tree
algorithm has the planar property i.e. it couldelbebedded in a plane such that its edges

intersect only at their end points. Due to thispemty a Steiner tree could be efficiently
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implemented in a single layer. But for multi-layeuting the Steiner tree need to be
extended over different layers. Because a singlerI&teiner tree is not built with the
constraint of vias, this extension over multiplgdis is not efficient and leads to reduced
reliability due to large number of vias.

The more recent NTHU Router [20] decomposes alltirpid nets into a set of two
pin nets and draws a congestion map, followed laptike maze routing, and it is very

fast.

2.4 Traditional Approaches

Many important problems lie in the category of camalorial optimization problems
and are hard to solve. The notion of problem hassligecaptured by the fact that the time
needed to solve an instance in the worst case gesyenentially with instance size.
Often, approximate algorithms are the only feassol@tion at low computational cost.

Most approximate algorithms are either constructalgorithms or local search
algorithms. Construction algorithms build solutidnsa problem under consideration in
an incremental way starting with an empty initialusion and iteratively adding
opportunely defined solution components withoutkr@cking until a complete solution
is obtained. In the simplest case, solution comptmare added in random order. Often
better results are obtained if a heuristic estinodtedding a solution component is taken
into account. An example of such a heuristic isedyeheuristic. A disadvantage of a
greedy heuristic is that only a very limited numbérsolutions can be generated. Also,

greedy decisions in early stages of the constmicpoocess strongly constrain the
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available possibilities at later stages leadingréoy poor moves in the final phase of
solution construction.

Local Search algorithms start from a completeahgblution computed by one of the
approximate methods and try to find a better sotutin an appropriately defined
neighborhood of the current solution. Moving fromeosolution to a neighbor solution
requires defining a neighborhood relation on tharde space. As an example, the
neighborhood of routed path in a graph is anotlag¢hn differing by only one graph edge.
Every candidate solution has more than one neigbdlation, the choice of which one to
move to is taken using only information about tlidusons in the neighborhood of
current one, hence the name local search. Theelobian appropriate neighbor relation
is crucial for the performance of local search athms. Local search algorithms are
known as incomplete algorithms, because the sqaxmtess may stop even if the best
solution found is not optimal.

The routers described above fall into either of tta@egories of local search or
constructional algorithm. For example, maze roudea local search algorithm which
iteratively expands in its neighborhood until ihcles the destination point. On the other
hand, greedy routers make a decision based on lof@imation and move in the
direction which looks most promising in the localesario. A Steiner tree based
algorithm is constructional algorithm as it uses thinimum spanning tree algorithm as
its starting point and iteratively adds edges ® ¢banning tree to form a Steiner tree.
Among the academic routers used above, most of Uesmrmvariations of maze routing

combined with constraint specification.
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2.5 ACO Metaheuristic

Ant Colony Optimization metaheuristic is a probmi¢ technique of stochastic
solution construction. A solution is built iteragly by adding solution components to
partial solutions constructed by ants. The pheramaformation is updated by the ants
at run-time to reflect the information acquired idgr search. [20]. The stochastic
component in ACO allows the ants to build a wideiety of different solutions and
hence explore a much larger number of solutions t@edy heuristics. At the same
time, the use of heuristic information, can guile aints towards the most promising
solutions. Moreover the ant's search experienceléments a form of reinforcement
learning that is used for solution constructionfuture iterations of the algorithm.
Additionally, the use of a colony of ants can dikie algorithm-increased robustness, and
in many ACO applications the collective interactmina population of agents is needed
to efficiently solve a problem. The domain of apation of ACO algorithms is vast.
ACO algorithms are being extensively used for NRdh@ombinatorial problems. This
includes both single objective and multi-objectpreblems like routing, data mining and

voice recognition [62-64].

2.5.1 Problem Representation

According to Dorigo and Stutzle [20] a combinatbogtimization problem can be
represented asS(f, Q), whereS is the set of candidate solutiorfsis the objective
function which assigns an objective function (costjuef (s, t) to each candidate

solutions € § and Q (t) is a set of constraints. The paramdtandicates that the
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objective function and the constraints can be toe@endent. The goal is to find a
globally optimalsolutions,; that is, a minimum cost solution that satisfies tonstraints
Q.

The problem representation of a combinatorial ojttion problemg, f, Q), which is
exploited by the ants, can be characterized withite setC= (cy, co... ... ... cn) of given
components, the statethe problem defined in terms of sequences(ci, cj....ck) over

the elements of, finite set of constraint® that defines the set of feasible states et

of feasible solutions such th&*] S and a cost functiori(s, t) associated to each
candidate solution. Given this representationfieidl ants build solutions by moving on
the construction grapBc=(C, L), where the vertices are the componé&htsnd the set
fully connects the components. The graph is called construction graph anhdare

called connections.

2.5.2 Ants’ Approach

The solution construction is carried out by ari#ficants by moving on the
construction graphGc. Ants do not move arbitrarily ors, but rather follow a
construction policy, which is a function of the pkem constraintg2. It exploits the
graphGc to search for feasible solutios®f minimum cost. It has a memoly that is
used to store information about the path it folldw&lemory is used by an ant for
various different purposes: to build feasible sohg using the constrai, to evaluate
the already found solutions, and to deposit pher@ran the path traversed. Pheromone
trail encoding acts as ant memory and is updatgdlady by the ants during the search

process. Ants could be assigned a start state aadnenation condition. The heuristic
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value used by the ant represents a priori inforomaéibout the problem instance. An ant
selects the move by applying a probabilistic decisiule. Its probabilistic decision is a
function of locally available pheromone trail anelhistic value, ant’'s memory storing its
search history and the problem constraints. Onoengplete solution is built the amount
of pheromone on each connection in the solutiampated. The construction procedure
of an ant stops when at least one of the terminatomditions is satisfied.

It is an important characteristic of ACO, that antsve independently and each ant
find its own solution to the problem under consadien. Good quality solutions emerge
as the result of the collective interaction amohg &nts via indirect communication
mediated by the information that ants read andevinito the variables storing pheromone
trails. Thus it is a distributed learning, in whiahdividual ants do not adapt their
behavior, but they modify the way the problem ipresented and perceived by other

ants.

2.5.3 Ant Colony System

There are various different versions of ant coloptimization algorithms used today,
and most are advanced versions of a very simple A©Qel called ‘ant system’. Some
of the advanced versions are rank-based ant syst@@es-min ant system, elite ant
system and ant colony system. ACO algorithms haenlsuccessfully implemented for
solving Traveling Salesman Problem (TSP). This weiploys ‘Ant Colony System’ for
VLSI routing. Here we explain how ACS has been usedolve the TSP. In the next

section we modify this algorithm for VLSI design.
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To solve TSP, Ant colony system [20, 65, 66] iplemented as a colony af ants
which are initially placed on cities either randomly or using some initializatiecheme.
This city is known as the start city of the ant andtored in ants’ memoi. An ant also
maintains a list of visited cities to keep trackiloé cities it has already visited. The start
city is added to the list of visited cities. An d@efratively moves from one city to another.

An ant k located at citychooses to go to an unvisited dityith a probability given by:

k [Ti '(t)}a'[rli ']ﬁ o k

()= J J I cN'

P e
leN? (2.1)

Wherep; ; = Probability that an ant at nodwvill move to nodg.
7i,; = Amount of pheromone on paithj.
ni,j = Desirability of any path, j is a priori heuristic informatiorin the case of
TSP,n;,j= 1/ dij where d is the distance between two cities i and j.
a = Parameter to control the influencergf
S = Parameter to control the influencenpf
N, =is the feasible neighborhood of ant k that is,ght of cities which the ant
has not yet visited.
Whena is set to 0, the selection probability is propmrtl toy ; ; and the closest cities
are more likely to be selected. The algorithm &kesa greedy algorithm. Whefiis set
to 0, only pheromone amplification is at work arhbe no heuristic information is used.
This leads to poor results due to occurrence gnsttion, i.e. as all ants follow the same
path and construct the same tour, no new pathexalered and the algorithm terminates

with a sub optimal solution. After an antravels from a city to cityj using the above
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probability pki, j the pheromone trail of the ant is updated. Thikniswn as local

pheromone trail update

The goal of local pheromone trail update is takenthe path taken by aktless
desirable for the following ants and hence stinaikatploration of paths that have not
been visited by ants. Thus to reduce the desinalaf the path taken by an ant, the

amount of pheromone on the path is reduced by stanhfactok.
Ti,j_(l_g)Ti,j 2.2)

After each ant has completed its tour, pheromaaiéstare updated. This is known as
‘global pheromone trail updateGlobal pheromone updation could either be appited
each ant of the colony or only to the best anhefiteration. For TSP, the best ant is the
one with minimum tour length in the current iteoati

Pheromone update is a two step procedure. Firsha@lpheromone trails are lowered
by a constant factgr. This is known as evaporation. Evaporation is agagy as it allows
unlimited accumulation of pheromone trails and égmlihe algorithm to forget bad
decisions taken during the previous iterations. fheromone evaporation is represented

by the following equation.

Tijj=(1_p)T1',j' V(Z’J)EL (2-3)

After pheromone evaporation the second step isopm@ne deposition. In Ant Colony
System, only the best ant is allowed to add phernarafter each iteration. This is an
important feature of Ant Colony System as it redutiee complexity of pheromone

update from O( required in case when pheromone update is apfiedch ant of the
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colony to O(n) when update is applied only from test ant. To make sure that the
amount of pheromone deposited is an indicatiohefdquality of the path, this amount is
a function of the tour length traversed by the ket Thus the amount of pheromone

deposited is given by:

AT =
o J CbS (24)

WhereArbSi”j is the amount of pheromone deposited on the p&énthy the best ant

of the iteration andC™ is the tour length traversed by the best ant..réfbee, the

pheromone update could be represented as:

bs .. bs
Ti,jz(l_p)Ti,j—l_pATi,j’ V(I’J)ET (2.5)

Thus we see that the ants are guided, in buildivar ttours, by both heuristic
information and pheromone information and an edigle avhigh amount of pheromone is

a very desirable choice.

2.5.4 Steiner Trees for VLSI Routing

This section discusses the Steiner tree baseditge®that are used to solve VLSI
routing. As discussed earlier, due to high compjewi finding accurate Steiner trees,
heuristic based algorithms are used to find esémaf optimal or near optimal Steiner
trees. One such heuristic based algorithm suggdsyedu Hu [54] uses the ACO
approach to construct rectilinear Steiner treesgusie heuristic that requires ants to start

at each cell to be connected and meet as quickbpssible. The algorithm uses an ACO
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approach in which when an ant A meets another aahBA dies and the visited list (list
of nodes visited by ants) is merged to the visiigtdof ant B. A very similar approach is
taken by Das [67], that instead of using the maks aneet soon heuristic, uses a bias
value for the paths already taken. This bias vattracts the ant to the path already taken
by another ant. To simplify the problem anotheoathm suggested by Luyet [68] uses a
distributed approach in Ant Colony Optimizationgolve the Steiner tree problem. The
method uses a preprocessing step that reducegdhehsspace by identifying edges or
non terminal vertices which do not belong to astemne minimal Steiner tree and edges
or non terminal vertices which belong to all minin&teiner trees. The probability of
choosing an edge is a function of greedy fdgéém)and trail intensityl'r(m)where m is

a move based on these two parameters.
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Chapter 3

Ant Colony Algorithm for VLSI Routing

This chapter discusses the Ant Colony Optimizatadgorithm for the NP-hard
problem of routing VLSI chips. Placement of comeots on a chip can affect the
routability, wire-length and timing constraints odutes laid at later stages. Thus to
achieve a more optimized placement that has miniraangestion and route blockage,
routing and placement are completed simultaneoitsiygting between the two, instead
of completing placement before considering routifige information exchange between
placers and routers occurs through a set of fikégerent routers may require that this
information be supplied in a particular format. Dieethis reason there exist several
different formats to specify the input informatitsmthe router (Appendix A gives a brief
overview of some of these formats). This work u$8BD98 benchmark suite in

bookshelf format.

3.11SPD98 Benchmarks Suite

ISPD (International Symposium on Physical Desigahchmarks are derived from
IBM internal design format and include circuits qmmsing wide variety of library
components like memory, logic, processor etc. Evarguit in this benchmark is a
translation from VIM (Very-Large-Scale Integratecbdél- IBM’s internal data format)
into net format, which is a simple hyper-graph esgntation originally proposed by Wei
and Cheng [11, 69]. The ISPD benchmark includesit®its named IBMO1 to IBM 18

and each one having different complexity and sikke benchmarks exclude any
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information related to functionality, timing andctamology. The benchmark includes
information related to cell placement, size anemation, connectivity information and
circuit row information in the bookshelf format. F@ach benchmark circuit this
information is contained in a set of 6 files. Tloaifimportant files used for routing are

described below. (A detailed description of thekesfis available in Appendix A.)

0] IBMxx.aux: This file is known as Auxiliary File anlgdas an extension .aux. The

auxiliary files contain the set of input files atie placement method.

(i) IBMxx.nodes: This file is known as nodes file armhtains information about
specific objects. It specifies
» Total number of objects.
= Total number of terminal objects.
= For each object it specifies object name, widthgliteand whether it is a
terminal or non-terminal object. To signify a namrhinal object the keyword

‘terminal’ is omitted.

(i) IBMxx.nets: A nets file specifies the set of nétsncludes
= Total number of nets
= Total number of pins
For each net it includes net-degree, pins formirgggart of net and whether a
particular pin is acting as an input or output e het. An input is represented

using ‘I' and an output using ‘O’ in front of themponent name.
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(iv)  IBMxx.pl: A placement file specifies the locationdiorientation of objects. The
orientation of a component could either be N, FNFE, S, FS, W, and FW [70].
The default orientation is “vertically and face wpid is represented as N (North).
Other orientations are obtained by flipping N, E,aW S orientations by right

angle about X or Y axis and are represented as=BNFW and FE.

3.2 ACO Algorithm for Manhattan Routing - Model

Formulation

This section describes the assumptions and th@agiptaken to formulate a model in
which an Ant Colony Optimization algorithm could imeplemented to route VLSI chips
in a power efficient manner.

The key assumption made for this model is that esmthcomponent and wires are
assumed to have zero width and height. As mentieaetier, wide wires are used in
upper metal layers and narrow wires in lower m&tgers to minimize resistance and
capacitance effects. However, in this model therdayare implemented in memory, and
no parameters are used to depict upper and lowel ragers differently. The description
of ACO algorithm in Chapter 2 specifies that th@lagation of ACO to a combinatorial
optimization problem requires that the problem mustrepresented as a construction
graph Gc=(C, L) which could be exploited by ants and the nodeshef graph are
characterized as a finite set of compon&htghich are joined by the connectidnsThus
to model the connections between different cellsaachip, these cells are assumed as

mere points forming the nodes of a gr&ph
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Manhattan architecture allows only horizontal amdtical routes. To represent such
architecture, a grid-less approach is adopteddatimg, i.e. the router does not depend on
a grid to locate wires on a surface but instegaites wires in a space according to the
placement of the components which are to be rouféds in a grid-less approach a
Hanan grid is created from the coordinates of thk location [54]. A Hanan grid is
formed by the intersection of horizontal and vettitnes drawn at each node of the net
(Figure 3.2). Hanan [71] showed that there is aleayninimal rectilinear Steiner tree for
the nodes of a net placed on the Hanan grid [7R,DiB to this reason a grid-less router
guarantees a solution if one exists. Another aggndf grid-less router is that it allows
variable wire and via widths and variable wire spgowhich is required for complex
circuit design [25, 26]. This Hanan grid is implerted as layered model with two
horizontal and two vertical layers (four routingéas total).

The following steps provide an overview of the@@pproach to VLSI routing.

1. A Hanan grid is created from the component cootdma
2. All possible pairs of x and y coordinates are starememory.
3. The nets from the net-list file are sorted accaydmtheir size.
4. The ACO algorithm routes one net at a time.
5. The route solution returned by ACO is fitted intee tbest possible route and
layer.
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L

Figure 3.1: A Hanan grid formed by three terminati@s of a net (green nodes). Blue

nodes are formed by the intersection of Hanan lgres.

3.3 ACO Algorithm for Manhattan Routing (ACO-Route)

This section discusses each step of the algoiithaetail.

3.3.1 Create Manhattan Grid

The first step for the routing procedure involveeating a Hanan grid from the
coordinates of all the components placed on chige §oordinates are read from the
placement file and stored in memory. These compsrgve multiple pins which act as
an input or an output in a net. Each time a compboiglisted as an input or an output,
one of its pin participates in the net. To accomatednultiple pins belonging to a single
component, the grid coordinates around the compgtndacation are used. The
following methodology is used while choosing thembnates of the pins.

1. If a component is used in a net only once, the aomapt coordinate location

defines its position on the grid.

2. Ifacomponent is used twice, left and right coonatié locations are used.
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3. If a component is used more than twice the uppkeraled right followed by

lower left and right grid locations are used foegvadditional pin location.

" N Al d T b

3i|i4 A,y | | |,y

e = :;_-_"- __________________ (_l_ ________ )_ _.-__E\ ________

-2 (L, )L, D

""""""""" Y% e Y ey
(@) (b)

Figure 3.2: The figure shows the pin locations elmosn the grid. If more than one pin is
used, the left and right grid locations are useu.dvery additional pin location; first the

upper left and right locations are used followeddwer left and right.

The locations are chosen in a manner such thatateegymmetrical about the x and y
axis. Moreover in the case of more than one pia,dttual component location is not
used as a pin location. The actual component lmtcasi used as a center point to choose
the offset for other pin locations. The alternateations chosen as pin coordinates were
also checked to make sure that they do not coinwitteany other similarly chosen pin
or component location. In real scenario the cethponents placed on the chip has a
particular length and width. The pins which forrpat of a particular net lie on either of
the grid points. The ACO model assumes these coemgsras points (with O length and
width). This allows ample space between two plac@ehponents for the pin locations

chosen in the above manner.
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Figure 3.3: The graph shows the number of pins bgatifferent components in

benchmark chips.

Figure 3.3 shows the number of pins used per coemgoan the x axis and the

frequency of the use on the y axis. Each time apoorant is used in a net, a different

component pin is used by the net. The error bgresent the standard deviation. The

median for the number of pins over all the benclkn& 22.5.
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The coordinates of components are stored in memnfokyanan grid is created by the
intersection of horizontal and vertical lines pagsthrough these coordinate locations.
The coordinates of the nodes created by the imdgoseof Hanan grid lines are also
calculated and stored in memory. A node belonging het must be distinguished from
the nodes formed by the intersection of the Hardah lgnes while they are stored in

memory.

' N ~
| L

@) (b)

(€)

Figure 3.4: (a) Shows three nodes to be routedrm & net. (b) Shows formation of a
Hanan grid. (c) Shows the layered model of the Hagéd with two horizontal (blue)

and two vertical (red) layers.
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To implement a layered model, every route on ghnid is assigned a count equal to n
where n is the number of horizontal or verticalelsyallowed. Whenever a particular
route on the grid is used, its coustreduced by one. The horizontal and verticalgsut
are identified by the coordinate positions of thate. Any route could be used for VLSI
routing until its countdrops to zero. Thus count helps to make sure thatittng should

be performed efficiently by using all the availaldgers.

3.3.2Sort Nets

The nets from the net-list file are read and sodecbrding to their size, where the
size of a net is a function of its degree, i.e. hanof nodes in the net, and the perimeter
it engulfs. The reason for sorting the nets beforging is because the algorithm ACO-
Route routes one net at a time. If the nets areedoone at a time, it is crucial to decide
which nets are routed first, as the nets whichran¢ed later would be unable to use the
routing space used by the already routed netst 8bts are routed first. Short nets have
less routing flexibility thus routing them first grantees a higher routing completion rate.
Moreover the capacitance is lower on upper layerd lsence the smaller routes are
routed in lower layers whereas upper layers arel dise long routes. Moreover this
minimizes the blockage that might be caused if lomges are routed first. The nets are
arranged in an ascending order by size.

A net perimeter is calculated as the manhattaramtist between the maximum and
minimum x and y coordinates of a net's componeRigute 3.4)Nets are routed first by

degree and then by net perimeter. It should bedntstat, givenz nets, there exists z!
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ways to order the nets but there does not exigilnpmial time algorithm that could
find which of these z! permutations could be thestrfeasible or efficient ordering to
route the nets. Thus in spite of ordering the tetsoute in a particular sequence, the

algorithm later uses @ and reroute.

's T h

Sy ¥)

(X,.V

Vi)

LN

Figure 3.5: Perimeter of the given net is 2(A+B)enh A and B is the manhattan distance

between minimum and maximum x and y coordinatesafponents respectively.

3.3.3Route Nets

Before routing the first net, the grid is initiadid with small amount of pheromone on
each of its paths. To route the nets, the firstimoeh the ordered set of nets is picked and
the ant colony algorithm is applied on this singét. The ants are randomly distributed
on the nodes of the net. The number of ants aref #60O parameters like (pheromone
parameter)p (desirability parameter), andare varied to find the best fit as discussed in
experiment and results section. The current nodetooh the ant is placed is marked as
visited in the ant's memory. The movement of thé faom one node to another is
controlled using the heuristic suggested by Yu-Bdj] [which requires the ant to meet

another ant of the same net as quickly as possible.capacitance of a wire is directly
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proportional to its length and hence this heuristakes the ant take the shortest possible
path to meet another ant quickly, which reducesatine-length used for routing.

The probability of choosing any of the nodes isuacfion of the desirability of the
path connecting to the node and the amount of ph@ne on that path (Section 2.4.5).
Thus themake ants meet sodreuristic is used to calculate the desirabilitytted path.
Following the heuristic, the desirability of an usited nodg when the ant is located at
nodei, is defined as the node that minimizes the disthet@een the nodeand all other
ants belonging to the same net. Hence desiralljtgould be written as:

« _ |
T i D D

L,J

r r

ik [)i,l’ [)i,m (3.1)

Whereq ' is the terminal node from where the currentséarted.

i is the current node of the ant that started' a

dir is the next node decided by this functighich is not yet already
visited.
“'Di,,- isthe total distance between ant’s next node j anatlaér ants when the

previous given node isand can be defined as:

“'D,.’X{ZM,.’(I—FMX,I. Fora#«'

a=1

(3.2)

Where M, ; is the Manhattan distance between pwirand‘a’.
a is the current position for other ants of tle¢ n

Thus the probability of choosing an &rgj) could be defined as following:
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i,j Z (Tix ,)(nf; ;) (3.3)

WhereP; ;= Probability that an ant at nod®ill move to nodsg.
7i,j = Amount of pheromone on paithj.
ni,j = Desirability of any path, j.
a = Parameter to control the influencer of
p = Parameter to control the influenceyqf;.

Also when an ant A meets another ant B, all thermediate points covered by ant A
are added to the route list of ant B, and all titermediate points covered by ant B are
added to the route list of ant A. The path fosahiand B is marked as completed, which
helps reduce the redundant steps taken by antr@aith the starting point of ant B and
vice versa. This is unlike the algorithm used id][&here when two ants meet, one of

the ants dies and the other ant is responsibledimpleting the search process.

-~ ~ ~ ~ | ~
2 v2| 2 v2| 2 AL’ 2 B 2
1 1 1 1 v |
- . - — D
vi vi C v3
| 3 | 3 L 3 3

(@ (b) (c) (d)

Figure 3.6: (a), (b) and (c) shows a stepsksp procedure of routing using the
heuristicmakes ants mesbon A net consisting three nodes 1, 2 and 3 is shéwts
start from these nodes and choose the next nodg tie heuristic. (d) Shows a routing

while this heuristic is not used (where v1, v2 &Bdndicates vias).
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Moreover this heuristic avoids taking inefficieetdundant routes as shown in Figure
3.6 (d). The routes (A, B) and (C, D) is an exangflénefficient routing that increases
the wire-length and requires comparatively mors.via

Every ant keeps a continuous record of the follawin
a) Steps taken to complete the tour.

b) Tour length, measured as Manhattan length of thero

C) Number of vias: In manhattan architecture, evenyheas four neighbors in four
directions i.e. left, right, up and down. While dsing the next node to move to,
every ant chooses out of these four unvisited feigh Figure 3.6 shows an ant
that started from node 1 and moves in the righeation for two steps. The ant
changes its direction and moves down at third stéps change in direction
implies a change to vertical routing layer and leerequires a via. Thus every

such change in direction by the ant adds on to mumbvias required to route.

e =~

\

Figure 3.7: At every step Manhattan architectulena four possible directions in which

an ant could move.

After an ant moves from one node to another, a lplscaromone update is applied using

Eq. 2.2 which lowers the pheromone on the arc tdkeant by a small amouit Once
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all the ants complete their tour a global pheromaik update is applied which includes
evaporation of pheromone on all the paths by alsmabuntp using Eq. 2.3 followed by
pheromone deposition on the best solution found.

The goal of this routing algorithm is to minimizéet power consumption by
minimizing the capacitance induced by the wires w@ad (eq 1.1). Thus the decision of
best solution is made by measuring the capacitambeced by each of the solutions
found by ants. On an average the capacitance olng wire is approximately 0.2
fF/um [74] and average capacitance of via is aBd@® pF [75, 76]. These capacitances
are approximations; in reality they will vary acdimg to process size for any particular
chip. The model can be easily altered to includedapacitance value by changing Eq.
3.4. Moreover the capacitances on a chip vary flayer to layer, thus if the precise
value of via and wire capacitance is known for elagler we can use different equation
while evaluating capacitance in every layer. Thigovang equation is used to evaluate

the routing solutions found by ants and chooseddsé among them.

Capacitance (C) = 2 x 10" (Wire-Length) + 2.3 x 10"**(No. of Vias) (3.4)

The route with minimum capacitance is chosen as#st route and the pheromone on
this route is increased in an inverse proportiofetmth of the best path found by ants.
The algorithm uses the ant colony network to fiodtes with minimum length. Out of

theses routes it reinforces the routes with mininoapacitance. This helps the algorithm
to meet two different but related goals of minimgicapacitance and wire-length

collectively. Thus to retrieve routes with minimuwnre-length it is essential to feedback
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correct information to the ant colony network. dlieedback information about any
particular route is provided through the pheromdeeosited on that route during the
pheromone update. Thus in an ant colony netwoik gssential to provide the exact
information about the suitability of a path whichexpressed in terms of the route length.

The amount deposited can be written as:

— 77 bs
ATi,j—lllV (3.5)

WhereArt ; is the amount of pheromone deposited and W isahgth of shortest path

found using Eq. 3.4.

3.3.40rdering Problem

While ACO is used for routing, ants are not infochabout which paths are used by
other routes and which are available for routingisTallows ants to come up with the
best possible routing solution for any net. There aases when ants find a solution that
uses a path which is already being used for routingome other net. The algorithm
takes care of such cases in the following manner.

First the algorithm calculates the length of threadly routed net which overlaps with
yet to be routed net. If the only common point isan-terminal node, the algorithm
compares the length for which both the ‘net routas’ without changing direction. This
is an important aspect for deciding which net igtatt, as change in direction indicate
use of vias. Thus to minimize the use of vias, ithiete which changes direction are
shifted to alternate routes or layers. Shifting tte route that runs without changing
direction might lead to unnecessary addition ofsvé@ad hence is discouraged by the

algorithm.
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In the second case, two nets share not just a jpoin common path. Again the
number of direction changes is measured. It mighthe case that shifting a net route to
another layer, leads to increase in wire-lengtmnibbstacle is faced in this new layer.

Thus, it is necessary to check that saving viawtsleading to wire-length increase.
Hence a final decision of which net is shifted iad®a after calculating the TCI parameter
for both the nets in different layers.

The following figure (Figure 3.8) shows a simplesean which ACO-Route finds a
solution to connect terminal 1 and 2 throwgandb. As the route does not overlap with
any other already routed net, it is routed on thd. d-ater the route found to connect
terminal 3 and 4 overlaps with the already routetl connecting 1 and 2. The route
connecting terminal 3 and 4 is allowed to routetigh a, b and the other route is routed
using another horizontal route on the first layer.

The rip-up and reroute strategy discussed aboveide® an easy solution to the
problem of route blockage caused in routing andifig shortest paths to overcome the
blockage. The rip-up of previous connections ireottd route blocked connections takes

up to 20% of the total routing run time.

3.3.5 Un-routable Nets

In some cases the best route found using ACO-Risuten-routable either due to

obstacles posed by placed components. Due to Uabiigy of a routing path, the
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(b) (c)
Figure 3.8: (a) A routed net connecting terminahdl 2. (b) Route found using ACO-
Route to connect terminal 3 and 4. (c) As the tawdges overlap the route connecting

terminal 1 and 2 is shifted to another horizontaite on the first layer to make space for

the route connecting terminal 3 and 4.
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algorithm can not re-route the already routed met$ to find an alternate route to route
the current net. In such cases the ACO-Route algoriries to route the current net using
the second best routing solution found by the dhthe second best solution is unable to
route the net, the algorithm tries up-to third,rtbuand fifth best routing solution. If none

of these solutions are routable, it re-routes thele circuit using a random strategy. The
random strategy employs a random permutation of megspective of the net size and
degree. The random strategy is successful in brgaut of the deadlock of un-routable

nets. On an average the number of nets routed tisenglternate strategy was very small:

0.017%. The following algorithm provides an outlofehe ACO-Route algorithm.

ALGORITHM 2: ACO-ROUTE

1. Create Hanan Grid

2. { Order the x and y coordinates of the compagaéom placement file.
3. Take every possible pair of x and y coaatis and store it in memory.
4. }

5. Assign neighbors to each coordinate position.

6. Order nets according to degree and then size.

7. Initialize pheromone on the grid.

8. While (termination condition is not met)

9. { Route
10. { For ( each ant)

11. { Empty ant'mory.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Place thésaat some terminal node.
Construatamplete tour for ants
{ Usgirthe above mentioned decision
rule choose the next node for the ant.
Move the ant to the next node and
decrease the pheromone of the path
taken by a small amouit
If an ant meets another ant, append
the route list traveled by one ant to
the route-list of other ant and vice
versa.
}
Find the best ant of the iteration using the Cdpace
parameter.
Update the global pheromone value of the best ant.
}
Find the best ant routed solution, and check yf part of this
solution overlaps or has any common points with es@neady
routed solution.
}
Decide to shift either of these routes teeotayer, based on Capacitance

parameter.
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3.4 ACO Algorithm for Non-Manhattan Routing (ACO-

NMRoute)

The trend of constantly increasing circuit comptgxnd decreasing chip sizes requires
new routing approaches. A new routing paradigmwaiig wires to route at 45° and 135°
in addition to 0° and 90° called non-manhattan irguthas been proposed [77, 78]

(Figure 3.9).

Figure 3.9: Eight possible neighbors of node A.

An example in Figure 3.10 shows that diagonal rmutan achieve up-to 30% reduction
in length. Such architecture allows the routerxtpl@it all possible eight directions for

routing wires thereby providing increased routiagacities.

Figure 3.10: Effect of diagonal routing on wirexgh.
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With slight variation the ACO algorithm discuss@dSection 3.3 can be easily extended
to the non-manhattan architecture. Below are thee \tariations required to implement

ACO algorithm on the non-manhattan routing arclbitex

3.4.1 Grid Based Approach

Unlike manhattan routing, which uses a gridlessr@ggh i.e. the pitch of the grid is
defined by the location of cells on the chip, noanmattan architecture uses a symmetric
grid. A symmetric grid is defined by a uniform gitthroughout the chip. The choice of
the pitch depends upon various factors includirggtyfpe of chip technology, the library

cells used on the chip etc.

Vertical Layer
'135° Diagonal Layer
45° Dingonal Layer

Horvizontal Layer

Figure 3.11: An example of diagonal routing showlioigy layers: horizontal, vertical,

45° diagonal and 135° diagonal layer.

The number of rows (in case of row based placen@mumber of columns (in case

of column based placement) is obtained fretandard cell layoufile (.scl file). The
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number of rows or columns allows defining the homial and vertical routing grids.
Suppose

Die size=w x h (3.6)
wherew is the width of the die and is the height of the die. In case of row based

placement the distance between any two rows caletieed as:

Dr=2_
Nr (3.7)

where Nr is the number of rows. Similarly in cadecolumns based placement the

distance between any two columns is defined as:

Nc (3.8)
where Nc is the number of columns. The distancevd=t horizontal rows and vertical
columns is defined usingx whereDx=Dr or Dx=Dc depending on row based or column
based placement respectively. The ppobif the gird i.e. the minimum distance between

any two wires is defined as:

_Dx
V2 (3.9)

In this routing strategy the wires are allowed ¢gotaced in every row. Thus while the
diagonal routes are laid the minimum distance betwany two possible routesx/A2

(Figure 3.11).
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51

Figure 3.12: The distance between two diagondiaekethe pitch in the non-

manhattan routing.

3.4.2 Sort Nets

The ability of non-manhattan architecture to enleaperformance and reduce power
consumption is a direct consequence of reductioroiried wire-length and number of
vias. This reduction in wire-length is obtaineduiyizing the diagonal routes available in
this architecture. A simple diagonal route conmagrtiwo points can achieve 30%
minimization in length over a manhattan route. Ttausaximize the utilization of these
diagonal routes, the nets are sorted in an orddr hat the routes that span more either
on x or y axis are routed first. Thus the axis sganeasured as:

Axis Span=|A X —AY | 18)
In manhattan routing the nets are sorted first bgree and than by size, whereas in
diagonal routing the emphasis is to maximize theaigliagonal routes. Thus the nets are

first sorted by degree and than by axis span.
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Chapter 4

Results and Discussion

This section describes various experiments thaéwenducted to test the efficiency

of Ant Colony Optimization algorithm in routing VIL8ets.

4.1 ACO Parameters

Various parameters discussed above that are usea l@olony System can affect the
performance of ACO algorithm. Thus these paramedegschosen after measuring the

performance of the algorithm with various paranmgesattings.

4.1.1 Search Parameters

The three main parameters that affect any ACO dhgoris the choice of alpha),
beta [f) and rho §). The performance of an algorithm can be meashbyadeasuring the
distance between tours[79]. This distance is measby counting the number of arcs
contained in one tour but not in another. A deadasaverage distance between ant’s
tours indicates that preferred paths are appealtogeover the search behavior of the
algorithm can clearly indicate towards good and Ipmitameter settings. A good
parameter setting maintains a balance betweerotus fof the search and exploration of
new paths during the search. Whereas a bad parasettiag will make the search either
too narrow and focused leading to stagnation behawer could cause excessive

exploration of search paths leading to a never eajing search process.
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Ant Colony system is an aggressive search procatiatgocuses around the best-so-
far solution. After each ant complete its tour, liest ant of the iteration is found and the
pheromone of that ant is reinforced. Due to thisfoecement the new paths found by
ants in successive iterations differ from the poesi solution. Moreover as the ant
traverses a path, the pheromone on that path isrémvto make it less desirable by
successive ants. Lowering the pheromone lowergrbigability of the path to be chosen
by other ants. This helps in exploration of untedi paths by the ants. Due to its
probabilistic nature the Ant Colony algorithms doaet converge quickly. The
convergence of these algorithms depends on how mineghexplore or exploit the search
space. The focus of the search and its exploitaiatare can be controlled through ACO
parameter i.ea, f andp. Thus to find a suitable value of parameters thaintams the
balance between the focus and explorative natutheokearch the difference between
tour lengths was measured for various nets withynidifierent sets of parameter values.
The set of parameter values that provided a goguianement in performance with the

iterations of the algorithm was chosen.

Table 4.1 Different Sets of Parameter Values usegtaphs below.

ACO ] [ ] ]

Parameters (Good) (Bad) (Bad)
Gl Bl B2

Alpha (o) 0.6 0.75 0.9

Beta () 0.3 0.5 0.5

Rho (p) 0.2 0.1 0.1
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Figure 4.1: Graphs showing change in distance keiweurs with the iterations of

the algorithm with different sets of parameter eslu(The distance between tours is

measured as the number of arcs contained in ométbunot in another.)
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The graphs in Figure 4.1 give an example of thestgh comparison made to
differentiate between good and bad sets of paranalees. As seen in graph (a), (b) and
(d) the average distance between tours (for sgacdmeterd2) acquires a high value
and remains nearly same with the iterations ofalgerithm. This behavior is due to the
excessive exploration, as the algorithm is unabked¢us on the promising parts of search
space. Whereas for another set of bad paramBtens graph (a) and (d) the average
distance between tours fall rapidly, which suggdisés the exploration of new paths is
very low and the search is too focused. In contthstgood set of parameters represented
by G1is able to find a balance between the two obsebetthviors and is neither too
focused nor too explorative. Based on the analylsisrious different sets of values the
G1 parameter set was chosen for ACO algorithm. In rotdemaintain the consistency

these values are kept constant for all the ruriselgorithm.

4.1.2 Number of Ants

The number of ants used in an ACO algorithm dependfie number of nodes of the
search graph and has a direct influence on the gtatipn time of the algorithm. More
ants per node are able to perform a more exhausti®ech compared to fewer ants, but
also require more time for computation. Thus, thexrests a trade-off between the
computation time and performance of the ACO-rodgordghm. This trade-off exists
only until the number of ants used in the algoritlerbelow saturation value beyond
which performance does not improve. If the averagaber of ants per node is increased

beyond this saturation value, the increased nurabants tends to reinforce the locally
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optimum solution. Beyond this value, the only affetthe increase in number of ants is

to increase the computational time of the algorithm

This work emphasizes minimizing power consumptiolmiclw can be achieved by
minimizing the wire-length and vias over the congbiain time required by the algorithm.

Thus the choice of average number of ants per meake made as the number at the

saturation value.
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Figure 4.2: Comparison of average Wire-Length Cambioy algorithm with increase in

average number of ants per node.

The above graph shows that the performance ofltwitom increased by 8% when
the average number of ants was increased from mfige. A saturation point appears
when the average number of ants is nearly five mpaie. Beyond this point the
performance of the algorithm slightly decreases dedomes constant. Thus if the
algorithm solves a net of degrgethe number of ants was chosen as five timeBhe
following table summarizes the value of variousapaeters used in the two ACO

algorithms and defaulted for all the runs of thgpoaithm.
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Table 4.2 Value of ACO Parameters used in ACO Atgor

0.6 0.3 0.2 0.1 Net

degree * 5

4.2 ACO Algorithm

Both the ACO algorithms, i.e ACO-Route, the ACO aaithm for routing in
manhattan architecture and ACO-NMRoute, the ACQoritlgm for routing in non-
manhattan architecture has been coded in C++ andxperiments were executed on a

2.6 GHz AMD Athlon Turion 64.

4.2.1 Results: ACO-Route

The ACO-Route algorithm uses 4 routing layers fellg the HVHV model i.e.
alternative horizontal and vertical layers. Botle tgorithms were tested using IBM
ISPD 98 benchmarks. (The details of benchmarksagadable in Appendix A). These

benchmark circuits contain chips with number ofrranging from fourteen thousands to

two hundred thousand.
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As mentioned above (Section 3.3.5) there mightases in which the best route found

using ACO-Route is un-routable either due to olletaposed by placed components or

unavailability of routable path in the vicinity die routing solution. The algorithm was

first executed without using the strategy to tackheroutable nets. Table 4.3 shows that

fewer than half benchmark chips required the adtiermouting, and of those 0.017% of

nets were left un-routed when no alternate roustrgtegy was employed. Later the

algorithm was executed along with the alternatateyy and was able to route all the

nets.

Table 4.3 Number of Nets Routed using Alternatat8gy

27401

31970 0.028
28446 16 0.056
60902 13 0.021
99666 8 0.008
190048 11 0.005
190048 7 0.003
189581 14 0.007
201920 23 0.011
113331.3 11.55 0.016

The following table gives the wire-lengths and thenber of vias computed by ACO-

Route.
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Table 4.4 Wire-Length and Vias After All Nets Ar@Red.

65488 130481
176994 289548
142099 348872
165382 359128
409744 458745
278493 519934
370481 569293
410486 659240
413972 572098
539672 714277
500829 772074
901855 1095894
852669 1047892
988858 1182291
1160517 1391744
1650562 1846991
1897493 2174810
1971423 2139592

To measure the effectiveness of ACO-Route the digorresults for wire-length was

compared with two state-of-the-art academic routeéebyrinth Router [58]and Fast

Route2.0 [60] (Table 4.2). The results were alsmgared with a recently published

router NTHU Router [61]
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Table 4.5 Comparison of ACO-Route with Labyrintidd&ast Router

68489 63321

65488

178868 170531 | 7.44 176994 186

150393| 0.6 191500148 146551 | 5.86 142099 254

175037 | 1.88 198181278 168262 | 13.61| 165382 551

409932| 2.03 6896711233 278617 12.22| 409744 408

284935 1.36 339379171 366288 12.75| 278493 252

375185 1.6 450855381 405169 | 15.89| 370481 301

411703| 2.36 466556364 415464 13.17| 410486 662

424949 1.92 481841553 580793 11.59| 41397]

T

803

595622 2.79 680113692 580793 33.72| 539674

T

952

307511| 1.61f 37765p 301p 317579 13J04 2972846.3
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Figure 4.3: Comparison of wire-length computed bgtRRoute2.0, Labyrinth Router,

NTHU and ACO-Route.
Table 4.6 shows that ACO-Route is able to achievargprovement of 3% compared
to FastRoute2.0 and 2% compared to NTHU router. D&ayrinth router and ACO-

Route is able to route all the nets, but ACO-Rathieves a 19% improvement over

Labyrinth in terms of wire-length.
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Table 4.6 Percentage improvement obtained by ACOtdrover Labyrinth Router,

Fast Route2.0 and NTHU Router

The results for vias and wire-length computed byQCARoute were also compared to
WROUTE [80] (Table 4.7). As the goal is to minimiggpacitance my minimizing wire-
length and vias, the reduction in capacitance vss measured (Table 4.7). Table 4.8
shows that ACO-Route is able to achieve an impr@rgrof 9% in terms of wire-length,
7% in terms of vias. The capacitance comparison mvade between ACO-Route and

WROUTE by substituting the wire-length and numbievias in the capacitance equation
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[Eq. 3.4]. ACO-Route was able to achieve a 7% rgdaodn capacitance compared to

WROUTE.

Table 4.7 Comparison of Number of Vias, Wire-Lengtid Capacitance Computed

By ACO-Route and WROUTE

145780 76500 130481 65488

321523 188000 289548 176994

624005 426000 14.36 569293 370481 13.1

721215 454000 16.59 659240 410486 15.17

603149 418000 13.88 572094 413972 13.16

758598 678000 17.46 714271 539672 16.43

795088 510000 18.29 772074 500829 17.76

1162650 1043000, 26.76 1095894 901855 25.22

641501 560250 13.12 600363.1 42247211 12.28
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Figure 4.4: Comparison of (a) wire-length (b) véasl (c) capacitance computed by

ACO-Route and WROUTE.

Table 4.8 Percentage improvement obtained by ACOtd&rover WROUTE
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4.2.2 Results: ACO-NMRoute

ACO-NMRoute uses four layers for routing in theertiorizontal, 45° diagonal, 135°

diagonal and vertical layer. The routing resulttaoied for ACO-NMRoute are as below.

The goal of diagonal routing is to overcome thdtktions of manhattan routing by using

diagonal routing paths and further minimize the ed@ngth. Thus ACO-NMRoute

results were compared to ACO-Route to measureetthection it is able to achieve over

manhattan routing. Table 4.9 shows the results wé-length and vias for ACO-

NMRoute and the reduction it is able to achiever &€0O-Route. ACO-NMRoute is

able to achieve an improvement of 8% in terms oéength and 5% in terms of vias.

Table 4.9 Wire-Length and Vias Computed By ACO-NMiRo

61377 129275 .9p
166406 284573 6.542 -5.98 -1.71
128274 338128 7.77 -9.72 -3.074
150018 335629 7.72 -9.29 -6.54
405902 429845 9.89 -0.93 -6.2P
271982 499823 11.50 -2.33 -3.86
349261 564970 13.01 -5.72 -0.75
389365 654873 15.06 -5.14 -0.663
412081 560148 12.89 -0.45 -2.08
532788 702341 16.16 -1.27 -1.6/71
474961 651069 14.98 -5.165 -15/6
878823 979420 22.54 -2.55 -10.62
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Ibm13 702280 973716 22.40 -17.63 -7.97
Ibm14 899782 998021 22.97 -9.01 -15.58
Ibm15 1002703 1289283 29.67 -13.59  -7.36
Ibm16 1338478 1676627 38.58 -18.90  -9.23
lbm17 1488590 1994263 45.89 -21.54  -8.31
Ibm18 709239 2005957 46.17 -13.29 6.2
Average 631239.4 837108.9 -5.98 -8.27 -5.98

As mentioned earlier the power consumption of @ ahidirectly proportional to the
total load capacitance. The capacitance for ACO-MMR is calculated using Eq. 3.4.

Diagonal routing achieves a 6%reduction in capacgaompared to manhattan routing.
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Figure 4.5: Comparison of (a) wire-length, (b) véasl (c) capacitance computed by

ACO-Route and ACO-NMRoute
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4.3 Verification

The results computed for ACO-Route and ACO-NMRoweze verified using three
different procedures.
() By checking usage of each edge on the grid.
ACO-Route uses alternate horizontal and verticgéria To implement two different
horizontal and vertical layers in memory, the grithe used for routing is allowed to be
used twice. Thus to make sure that each verticabarontal route uses either of the two

allowed layers, the edge is checked to make suezlge is used more than twice.

(i) By checking Commonality among different routes
Different routes found by the algorithm are checkmdcommon segments on the same

layer.

(iif) Comparison with half perimeter wire-length

The wire-length computed by ACO-Route was compaoeldalf-perimeter wire-lengths
of the IBM benchmark suite. Half perimeter wire gém gives an estimation of wire-
length that would be required to route a particuler in an ideal case. The estimate is
based on the fact that the area of a quadrilataralbe written as a factor of its in radius
and semi-perimeter. Thus in ideal cases when ntaclesis present on the chip, half
perimeter wire-length is required to route a nett@chip. But during actual routing the
presence of other cells and adherence to routimgtnts and rules leads to a much
longer wire-length. A comparison between HPWL ar@ARoute wire-length is made

in Table 4.10
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Table 4.10 Comparison of ACO-Route Wire-Length withf-Perimeter Wire-Length

65488 16297 34.16
176994 34719 23.18
142099 45094 17.20
165382 56496 21.29
409744 94986 22.62
278493 47919 21.65
370481 78893 31.45
410486 92871 37.91
413972 89660 32.32
539672 169767 28.73
500829 189896 32.16
901855 291488 25.18
852669 245008 21.20
988858 318026 28.29
1160517 292239 24.62
1650562 350027 34.16
1897493 536891 23.18
1971423 214585 17.2
655390 175825.7 26.57

73

www.manaraa.com



Table 4.11 Reduction in number of nets routed ualtegnate routing strategy when the

number of routing layers is increased from fousito

27401 2

31970 0 0

28446 0 0

60902 2 0.0033

99666 6 0.006
190048 0 0
190048 4 0.0021
189581 0 0
201920 11 0.0055
113331.3 5 0.0048

4.4 Discussion

Power has been termed as a primary architectursibmieconstraint not only for
portable devices and computers but also for highsystems[8]. The main emphasis of
this work is to lower the major component of tqialver, i.e dynamic power. Eq.1 shows
that dynamic power is a function of voltage, capeeiload and frequency of the system.
Thus these three metrics can be traded to lowerdgmamic power consumption.
Although the quadratic dependence of power on geltaeans that by lowering voltage,
the savings can be significant. But the linear depace of frequency (clock cycles-

defines speed of chip) on voltage, bring thesenggvionly at the cost of reduced

performance.
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Pa V2 (4.1)
faV (4.2)
This work emphasizes reducing power by reducingtoked capacitive load of the chip.
Two of capacitive components the wires (intercots)e@and the vias that provide
electrical connectivity between different layersia® and total wire-length share an
inherent trade-off such that increasing one ofrtiedric leads to a decrease in the other.
Thus the challenge is finding the number of wired &ias that best meet the goal of
minimizing the capacitive load of the chip.

The ACO employed to meet this goal usesmiake ants meet sotweuristic to find the
routes with minimum length. Out of these, the althon chooses the best ant as the one
that provides with a least capacitive route. Thaultes show that the routes found using
ACO are able to achieve an average of 7% redudtiocapacitance compared to
WROUTE. Although the run time of ACO is comparatwenger than these algorithms,
it is able to achieve complete routing which isyoathieved by Labyrinth router. More
important than the actual running time is the sipbf run time with the number of nets.
Scaling exponents are significant in terms of prly the behavior of these algorithms
for complex chips with higher net count. Table 4sh@ws that the exponents for ACO-
Route and ACO-NMRoute are similar to Labyrinth. tRemute2.0 is able to achieve sub
linear scaling as it route nets simultaneously,ibigt an approximation that cannot route
all nets on the benchmark chips. The ACO routesyewet. Moreover, ACO is an agent
based algorithm in which every agent practices ratependent sequential decision
process aimed at constructing a feasible solutsinguonly information local to the

current decision step. Thus, ACO algorithm can dsl parallelized [20, 81]which can
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substantially reduce run-time without compromisihg performance. None of the other

routers use independent agents that can be easdilglized.

Table 4.12 Scaling Coefficients

The ACO-Route is 50% slower compared to Labyrirghter. Using the exponents in
Table 4.12 Labyrinth router would be able to rotltese nets in approximately half the
time compared to ACO router. The run time of ACOQuRRocan be decreased by using

multiple processors.
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Chapter 5

Conclusion and Future Scope

The challenge for device manufacturers lies in tgreg devices that offer an array
of services while maintaining power efficiency. T¢twmbination of greater functionality
leading to complex circuits and smaller processrggdes has contributed to significant
increase in power density of VLSI chips. The metilodies which are used to lower the
power consumption in VLSI systems range from delgsel to algorithm level. At the
device level, the active power consumed by the ¢hip factor of load capacitance,
voltage and clock cycles. The load capacitancarecilly dependent on the wire-length
and vias used to route VLSI chips. This work prilgaconcentrates on the device level
design measures which can be applied to redugectiver dissipation in VLSI circuits.

More specifically, the goal of this work is to mimize capacitance by minimizing the
length of wires and number of vias used in routiRguting of VLSI chips is an NP
complete optimization problem. Moreover the combirgoal of minimizing the two
interdependent metrics of wire-length and vias mbinatorial problem with multiple
constraints. An algorithm using an Ant Colony Op#ation technique was developed for
solving the coupled constraint of optimizing wiexngth and vias and thereby the load
capacitance. Ants were placed on the grid andvi@tba set of heuristics to guide their
search process. The heuristichake ants meet sodrelped the ACO algorithm to find
routes with minimum length. On the other hand thei@e of best ant reinforced the route

of ant that provided the solution with minimum ceip@nce. The effectiveness of the
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technique enabled the algorithm to find the optimahber of vias and wire-length and a
routing solution that minimizes capacitance andckehe active power of the chip.

Some of the past academic approaches [58-61] tte refficiently concentrated on
minimizing the total wire-length along with mininigy congestion levels. However these
approaches suffer from the trade-off that existavben complete routing and congestion
levels which hence affects the routing quality. W@O based routing algorithm is able
to achieve complete routing.

However there is significant room to enhance tigor@thm and widen the domain in
which it applies. These are described below:

1. In comparison to other routers the ACO based rastable to achieve complete
routing, but requires a longer running time. TheQ\&lgorithm is an agent based
algorithm in which every agent makes an independeaision while searching the
solution space. These agents share their seardnienxpe through the pheromone
trail. This independent nature of the algorithm banused to implement different
colonies of agents on different processors workimtependently on the solution
construction. This would require a central proctdsst can be used by all the
groups thereby minimizing the overhead for infororat sharing. Different
colonies running on different processors workingesi on same or different parts
of the problem will communicate their results te ttentral processor. The central
processor will be responsible for broadcastingehesults and other information
to the rest of the processors.

2. In addition to being agent based, the ACO algoritisas a set of parameters

that affect the search behavior. These parametershasen such that the search is
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neither too explorative nor too focused. Howevem@intain this search behavior
the ACO parameter that fit a particular set of ¢@ists might not be the best
choice for slightly different problem with differeset of constraints. The parallel
approach can also help in exploring the efficieabACO algorithm with different
set of parameters. Different colonies running odivildual processors can be
executed with different set of parameters. This lealp in testing a large set of
parameters in a small time and choose the one vginehthe best results.

Another promising approach to test différeat of parameters is using an
ACO embedded in a genetic algorithm. Genetic allgors employ the concepts of
natural evolution to direct the search towards sudehigh expected performance.
They simulate the evolution process by generatingiratial population of
individuals and then evolving the population by atation and reproduction
process. This can be achieved by using differehtegaof ACO parameters like
B andp among different populations. The GA will be resgibie for the evolution
of these populations. The ACO would be used to @kphformation stored in
pheromone trails during genetic operations likessower and mutation to obtain
offspring having good characteristics of parerdgsthose parents whose parameter
settings were most favorable for any particulabpem.

Another approach suggests that GA can be usednoléha particular set of
constraints and return a solution based on thesstreants. The solution returned
in step 1 can be used to lay the initial pheromimmeACO algorithm. The ACO
algorithm can further use the remaining set of trairtsts and execute ACO using

the pheromone levels initialized using the genatgorithm.
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3. The ACO based router implemented in this work taikeés consideration a
minimal set of constraints for minimizing the capacce which could hence
reduce the power consumption of the chip. Whiletimguin layers different
materials for conductors are used on different ingutlayers. Hence the
capacitance of wires and vias vary from layer y@taThe wires in upper routing
layers are comparatively less wide than the wineghe lower routing layers and
thus have lower capacitance. Due to the lower c¢tgrae of wires, longer wires
are routed in upper layers. Wires running paraiteleach other can lead to
crosstalk due to capacitive coupling between wi@apacitive coupling can cause

logic failure and timing degradation in VLSI ciresi(Eq 4.1).

.1
Coupling Capacitnace=¢&. —
piing Lap B 5.1)

Where€ =dielectric of the wire insulation

| = length of wire

t = thickness of wire
and s = distance between wires.
Thus while routing; coupling capacitance of wiresning parallel to each other
can be included as a heuristic in the ACO algorithlrhis would allow the
algorithm to find routes that minimize the couplingpacitance between wires.
Similar to coupling capacitance there are othersttamts which can be included
like timing and resistance of different routing Ipsat

4.  The ACO algorithm uses a rip-up and reroute styatedind the best possible

routes. Although rip-up and reroute is an effectmethodology, it takes up

considerable time in finding a routing solution. idover with the increasing
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complexity of circuits the number of nets to betealis now in the order of
millions. With such a large number it is impossitidind the best permutation of
these nets that could define the order in whicly thest be routed. The order in
which nets are routed affects the overall routgbitif chip. With the growing
trend of simultaneous placement and routing theésaec of which net should be
routed next should be based on the information th@uconstraints governing the
routing and the placement of a particular compoadneiady placed and routed by
the tool.

5. The ACO technique has been and continues ta &ccessful paradigm for
designing effective combinatorial optimization aitfums. The strength of ACO
algorithm lies in its ability to combine a prionformation about the structure of a
promising solution with posterior information abaie structure of previously
obtained good solutions. The particular way of mefy components and
associated probabilities can be designed in a @noldpecific manner there by a
allowing a trade off between the quality of solasoand number of iterations
which needs to be executed for the emergence af goloitions.

Moreover ACO can handle both static and dynamig setonstraints.

As chip designs become more complex and more dertidw power consumption
chips with high throughput are increasingly impottal’he design of such complex chips
necessitates continuous research to develop digwithat produce near optimal physical
designs. Ant Colony Optimization is a promisingaithm that can be effectively used to

improve these designs.
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Appendix

1. Routing Benchmark and Format

There has been extensive research in the fieldaoEment and routing algorithms for
VLSI circuits. For example there are several neadamic placers and routers that use
different approaches like simulated annealing [&Bificial intelligence [14] and neural
networks[15]. Such advances wouldn’'t have beenilplessvithout publicly available
standard circuit benchmarks and suites. DesignAation (DA) community has heavily
relied on these benchmark suites to compare andat@l their algorithms. These
benchmark suites are maintained by the Collabe&d@®enchmarking Laboratory [16]. A
benchmark contains variety of information dependamgwhether it is a placement and
routing benchmark or in particular placement onlyauting only benchmark. One of the
major benchmark suite used by the design commusitgPD benchmark suite. Some
other benchmarks include MCNC [82] and EDA [83]. NIC benchmark suite was
developed by Microelectronics Center at North Qaeoland included some of the
benchmarks like ISCAS85, ISCAS89, LayoutSynthesig®titioning93 [11]. EDA or
Electronic Design Automation benchmark is a coitectof large chip-design datasets.
MCNC and EDA did not release any new version ofchemarks and these circuits are
now obsolete as they do not adequately represertaimplexity of modern design. There
also exist benchmarks which are based on chip thke:FPGA, ASIC or DSP. An
example of one such benchmark is ITC99 [84, 85]cwhs an ASIC benchmark and

contains gate level information.
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Any complete EDA (Electronic Design Automation) ®yma is a disparate set of
heterogeneous tools stitched together [17]. Dutigdesign flow these different tools
interact with each other using data-file generatand translation. These files are
generated in a particular format by one tool aaddlated by another tool to its internal
data structure. Thus ‘format’ is defined as a difeset of files that contain data in a given
syntax that is understood by different interactiogls [18]. Some of the important
formats used by routing tools are EDIF[86], LEF/DBFF], Steiner [88], and Bookshelf
[89]. The EDIF or Electronic Design Interchange rRat provides connectivity and
layout information along with design hierarchy. LBEF or Library Exchange Format/
Design Exchange Format were defined by CadencegbeSystems to exchange data
across synthesis and design tools. LEF containgrdesles, cell description, dimension
and layout for routing whereas DEF contains actoahectivity information in the form
of net-lists. Steiner format net-list includes @a®position of multi-pin nets into two pin
edges, using a Steiner tree heuristic. It alsoigesvlayer assignment information such
that the area demand on each layer is equalized. dithe most recent and versatile
format is the Bookshelf format. Bookshelf is an eubj oriented format that contains
information in the form of library. Being objectiented allows reuse of the same
specifications for more complex circuits and acdiffierent platforms.

This research uses IBM ISPD98 benchmarks in bodkétenat and is described

below in detail.
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2. IBM ISPD Benchmark Suite

ISPD (International Symposium on Physical Desigendhmarks are derived from IBM
internal design format and include circuits compgswide variety of library components
like memory, logic, processor etc. Every circuittims benchmark is a translation from
VIM (Very-Large-Scale Integrated Model- IBM’s inteal data format) into net format,
which is a simple hyper-graph representation oaliynproposed by Wei and Cheng,
ISPD benchmark includes 18 circuits ranging fronM®. to IBM 18 and each one
having different complexity and size. The benchreakclude any information related to
functionality, timing and technology. The benchmantiudes information, related to cell
placement, size and orientation, connectivity infation and circuit row information in
the bookshelf format. For each benchmark circug ithformation is contained in a set of
6 files.

Each IBM ISPD benchmark circuit contains a set 6fe8. The information available in

each file is described below:

(i) IBMxx.aux: This file is known as Auxiliary File anlgas an extension .aux. The
auxiliary files contain the set of input files amide placement method. An

auxiliary file looks like:

RowBasedPl acenment : | BMkx. nodes | BMkKX. nets | BMKX. wt S
| BMkx. pl | BMkx. scl

(iv) IBMxx.nodes: This file is known as nodes file armhtains information about
specific objects. It specifies

= Total number of objects.
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= Total number of terminal objects.

» For each object it specifies object name, widthigliteand whether it is a
terminal or non-terminal object. To signify a namrhinal object the keyword
‘terminal’ is omitted.

A nodes file looks like:

NunNodes : 27507
Numlerm nals : 287
a0 6 16
al 20 16
a27219 6 16
pl 1 1 term nal
p286 1 1 term nal
p287 1 1 term nal
(iiii) IBMxx.nets: A nets file specifies the set of nétsncludes

= Total number of nets

= Total number of pins

» For each net it includes net-degree, net-componamd whether that
component is acting as an input or output in thie Ar input is represented

using ‘I' and an output using ‘O’ in front of themponent name.
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(iv)

A net file looks like:

NunmNets : 31970
NunPins : 105859
Net Degree : 2
ale004 O

a4246 |

Net Degree : 3
al7172 O

alée823 |

al0725 |

IBMxx.pl: A placement file specifies the locationdaorientation of objects. A

placement file looks like:

a0 24750 17696 : N
al 20856 31192 : N
a2 264 26656 : N
a3 19206 23632 : N
a4 27786 17696 : N

The orientation of a component could either be N, E, FE, S, FS, W, and FW
[70]. The default orientation is “vertically andckaup” and is represented as N
(North). Other orientations are obtained by fligpiN, E, W and S orientations

by right angle about X or Y axis and are represeateFN, FS, FW and FE.
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T .

Figure A.1 Representation of various possible ¢aons of a component on a chip.

(vi) IBMxx.scl: The scl or Standard Cell layout file prdes cell-placement
information as a set of constraints on row configion. A cell based layout is
mostly concerned with placement of cells and irdenections between them.

The placement of a cell has various constraintecsed with it which are

specified in the scl file in the following manner:

Core Row Horizontal/Vertical

Coordinate

Height

Sitewidth
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Sitespacing
Sireorient
Sitesymmetry

Subroworigin

Core is defined as the area to place rows or caduafidibrary cells. The first
parameter “Core Row Horizontal/Vertical” specifitisat whether cells are
placed in horizontal rows or vertical columns. lietplacement of cells is in
horizontal rows, the second parameter “Coordinapecifies the Y coordinate
of the row. Whereas if the placement of cells igentical columns “Coordinate”
specifies the X coordinate of the column. The heiha row is same as the
height of any cell in the row, since all the celte predesigned to have the same
height [90]. Thus the third parameter represergshisight of a row. Width of a
row is the sum of widths of all the cells and isswained by the parameter
“Sitewidth” i.e. the maximum row width possible.it&pacing” determines the
distance between two rows or columns of cells.€@ient” can take any of the
orientation values like N, E, W and S. This paraneipecifies the possible
orientations that a cell can take in a row or aucwl. The “Sitesymmetry”
parameter specifies the symmetry of a row alongeeibf the axis and could be
used to generate other possible orientations @llarca row like, FN, FE, FW
and FS. There could be many subrows inside a réw.pbsition of subrows is

specified by a coordinate point “Subroworigin”. & §ile looks like:
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(vi)

Nuntrows : 2

Cor eRow Hori zont al

Coor di nat e
Hei ght
Sitew dth
Si t espaci ng
Siteorient
Sitesymetry :
SubrowOrigin :
SubrowOrigin :

End

73200
2880
240
240

N

Y
222960

0

IBMxx.wts: The weights file specifies the weightrfobjects and nets. The

weight of net is a function of the timing behavadra net and hence is crucial in

performing performance driven partitioning [91, 9&]weights file looks like:

a0 224
al 64
a2 224
a3 128
a4 96

The following table gives the details of the benahkrcircuits used in ISPD benchmark

suite.
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Table A.1 IBM ISPD98 Benchmark Suite Details

14111 12506
19584 19342
27401 22853
31970 27220
28446 28146
34826 32332
48117 45639
50513 51023
60902 53110
75196 68685
81454 70152
77240 70439
99666 83709
152772 147088
186608 161187
190048 182980
189581 184752
201920 210341
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